Addition	Concrete	Pictorial	Abstract
Year 1 Introducing part, part whole in addition.	00000% them are red.'		$\begin{gathered} 2+4=6 \\ 4+2=6 \\ 2+4=4+2 \end{gathered}$
Stem sentences and vocabulary	\qquad is the whole; is a \qquad \qquad is 5 and more Demonstrate this in the classroom. 'First, four children were sitting on the bus. Then, three more children got on the bus. Now, seven children are sitting on the bus.	is a part 'first...,then..., now...'	'There are... and....' 'We can write this as __ plus __ \qquad 'The __represents the...' 'The \qquad represents the...' \qquad \qquad is equal to \qquad plus \qquad .' \qquad plus \qquad is equal to \qquad \qquad and \qquad are the addends.' \qquad is the sum.'

Subtraction	Concrete	Pictorial	Abstract
Subtraction	'The 6 represents all of the children.' 'The minus 2 represents the children who have put their coats on. 'The 4 represents the children who have not put their coats on.'	Reduction context - pictorial representation: First there were eightdoughnuts. Then one was eaten. Now there are seven doughnuts.' First	
Stem sentences and vocabulary	Demonstrate this in the classroom. 'First, there were five children in the book corner. Then, two children left the book corner. Now there are three children in the book corner.'		

Year 1	Concrete	Pictorial	Abstract
Multiplication Counting, unitising and coins	Pre-money tokens: 'How many dots are there? Count in groups of two.' Pre-money tokens: 'How many dots are there? Count in groups of ten.'		
Stem sentences and vocabulary	'This is a \qquad -pence coin. It has a value of \qquad p.' 'There are \qquad coins.' 'Each coin has a value of \qquad p.' 'This is \qquad p.'	'I say two pence, but I think two onepennies.' 'I say five pence, but I think five onepennies.' 'I say ten pence, but I think ten onepennies.'	'The \qquad costs \qquad p.' .' 'Each coin has a value of \qquad p.' 'The \qquad costs \qquad p.' 'Each coin has a value of \qquad p. ${ }^{\prime}$ 'So I need \qquad coins.'

Addition	Concrete	Pictorial	Abstract
Year 2	'Madison has two red marbles, Charlie has three blue marbles and Asif has five yellow marbles. They have ten marbles altogether.' Children can use real marbles as manipulatives. Practical: First, four children were sitting on the bus. Then, three more children got on the bus, and then two more children got on. Now, nine children are sitting on the bus.' Chairs could be arranged to support acting out this story. I have three apples, two bananas and four oranges. How many pieces of fruit do I have?' 3 2 $+\quad 4$	Part-part-part-whole representation:	$\begin{aligned} & 10=2+3+5 \\ & 2+3+5=10 \end{aligned}$ $\begin{aligned} & 7+5=7+3+ \\ & 8+5=8+2+ \end{aligned}$ $6+5=6+$ \square $8+\square>10+5$
Stem sentences and vocabulary	'First I partition the \qquad : \qquad plus \qquad is equal to \qquad ' Then \qquad plus \qquad is equal to ten...' '...and ten plus \qquad is equal to \qquad .' 'We can look for pairs of addends which sum to 10.' \qquad plus \qquad is equal to ten, then ten plus \qquad is equal to \qquad .		

Year 2 Subtraction	Concrete	Pictorial		Abstract
	Practise telling the story as a class until children are confident describing it: 'First there were twelve children on the ride. Then four got off. Now there are eight children on the ride.'	'First there were got off. Now the First	e children on the ride. Then four eight children on the ride.' Now	$\begin{aligned} & 12-2=10 \\ & 10-2=8 \end{aligned}$ so $12-4=8$ $12-/_{2}^{3} _{1}$ $\begin{aligned} & 12-2=10 \\ & 10-1=9 \end{aligned}$ so $12-3=9$
Stem sentences and vocabulary	We are going to partition the four into two and two.' 'We first subtract two from twelve to get to ten.' 'Then we subtract the remaining two from the ten - we already know that ten minus two is equal to eight.'			

Year 2	Concrete	Pictorial	Abstract
Multiplication	Grouping objects - example 1: 'There are some pencils.' 'The pencils have been grouped. '	- There are equal groups of eggs. - There are __ eggs in each group. - There are arouns of . - 'What's the same?' Tick the picture that matches the expression. $5+5+5$	2 2 2 2 $2+2+2$ 2 4 2×4 $4+4$ 2×4 3×4 $4+4+4+4$ 5×4 3 \times 2 $=$ 6 factor \times factor $=$ product 6 $=$ 3 \times 2 product $=$ factor \times factor $7 \times 2=8 \times 2-2$ 7×2 $6 \times 2-2$
Stem sentences and vocabulary	'The groups are equal because there are the same number of \qquad in each group.' 'The groups are unequal because there are a different number of \qquad in each group.'	There are \qquad and \qquad and \qquad and...' We can write this as \qquad plus \qquad plus \qquad plus...' mes factor is equal to the uct is equal to factor or.'	'There are \qquad equal groups of \qquad .${ }^{\prime}$ 'There are \qquad in each group. 'There are \qquad groups of \qquad .' Use cubes to show me four plus four plus four.' $4+4+4$ I have some groups of apples...' $3+3+3+3+3+3$ Draw a picture to show the apples.'

Year 2	Pictorial	Abstract
Division	- 'There are fifteen biscuits. If। put them into bags of five, how many bags will I need?' (5) (5) (5) 'A farmer has forty eggs. She can fit ten eggs in a box. How many boxes does she need?'	Describing remainders - example 1 : $9=2+2+2+2+1$ $9=4 \times 2+1$ $2+2+2+2=8$ $8-2-2-2-2=0$ $\text { so } \quad 4 \times 10=40$ $40 \div 10=4$ \square $] \times 2=$ \square so $12 \div 2=$ \square
	\qquad is divided into groups of \qquad There are \qquad groups.' \qquad \qquad is divided into \qquad groups of \qquad .	\qquad is the dividend.' \qquad is the divisor.' \qquad is the quotient.'

